Kniha je pokračovaním Kvadratických rovníc I. diel s 560 vyriešenými príkladmi, čo spolu s II. dielom tvorí 1030 vyriešených príkladov. V jedenástej kapitole riešime kvadratické rovnice s kladným diskriminantom dosadením koeficientov do vzorca a tak získavame dva rôzne reálne korene. V dvanástej kapitole diskriminant je menší ako nula, preto korene sú komplexné čísla. V trinástej kapitole je diskriminant rovný nule. Pred zátvorku vyberáme číslo a trojčlen v zátvorke upravujeme na druhú mocninu dvojčlena z čoho získavame dvojnásobný koreň. V štrnástej kapitole riešime rovnice, ktoré majú na ľavej strane druhú mocninu dvojčlena a na pravej strane reálne číslo. Odmocnením rovnice získavame na pravej strane odmocninu z pôvodného čísla so znamienkom plus a mínus. Prenesením čísla z ľavej na pravú stranu rovnice, dostaneme korene. V 15. kapitole pri riešení využívame faktorizáciu, vhodnou úpravou rozkladáme kvadratický trojčlen na súčin lineárnych dvojčlenov z ktorých určujeme korene. V 16. a 17. kapitole riešime kvadratickú rovnicu doplnením ľavej strany na štvorec, odmocnením oboch strán rovnice a výpočtom koreňov. V 18. a 19. kapitole riešime analogickou metódou ale pre komplexné korene.